Two Origins of Blastemal Progenitors Define Blastemal Regeneration of Zebrafish Lower Jaw

نویسندگان

  • Xuelong Wang
  • Huihui He
  • Wenqiao Tang
  • Xin A. Zhang
  • Xianxin Hua
  • Jizhou Yan
چکیده

Zebrafish possess a remarkable ability to regenerate complicated structures by formation of a mass of undifferentiated mesenchymal cells called blastema. To understand how the blastema retains the original structural form, we investigate cellular transitions and transcriptional characteristics of cell identity genes during all stages of regeneration of an amputated lower jaw. We find that mesenchymal blastema originates from multiple sources including nucleated blood cells, fibroblasts, damaged muscle cells and pigment cells. These cells are transformed into two populations of blastemal progenitors: foxi1-expression and isl1-expression, before giving rise to cartilage, bone, and muscle. Time point- based transcriptomal analysis of 45 annotated Hox genes reveal that five 3'-end Hox genes and an equal number of 5'-end Hox genes are activated largely at the stage of blastema reformation. RNA in situ hybridization shows that foxi1 and pax3a are respectively expressed in the presumptive mandible skeletal region and regenerating muscle at 5 dpa. In contrast, hoxa2b and hoxa11b are widely expressed with different domain in chondrogenic blastema and blastema mesenchyme. Knockdown foxi1 changes the expression patterns of sox9a and hoxa2b in chondrogenic blastema. From these results we propose that two origins of blastemal progenitors define blastema skeleton and muscle respecifications through distinct signaling pathways. Meanwhile, the positional identity of blastema reformation is implicated in mesenchymal segmentation and characteristic expression pattern of Hox genes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A proliferation gradient between proximal and msxb-expressing distal blastema directs zebrafish fin regeneration.

Previous studies of zebrafish fin regeneration led to the notion that the regeneration blastema is a homogeneous population of proliferating cells. Here, we show that the blastema consists of two components with markedly distinct proliferation properties. During early blastema formation, proliferating cells are evenly distributed. At the onset of regenerative outgrowth, however, blastemal cells...

متن کامل

Live Monitoring of Blastemal Cell Contributions during Appendage Regeneration

The blastema is a mass of progenitor cells that enables regeneration of amputated salamander limbs or fish fins. Methodology to label and track blastemal cell progeny has been deficient, restricting our understanding of appendage regeneration. Here, we created a system for clonal analysis and quantitative imaging of hundreds of blastemal cells and their respective progeny in living adult zebraf...

متن کامل

Fgf signaling instructs position-dependent growth rate during zebrafish fin regeneration.

During appendage regeneration in urodeles and teleosts, tissue replacement is precisely regulated such that only the appropriate structures are recovered, a phenomenon referred to as positional memory. It is believed that there exists, or is quickly established after amputation, a dynamic gradient of positional information along the proximodistal (PD) axis of the appendage that assigns region-s...

متن کامل

Activin-betaA signaling is required for zebrafish fin regeneration.

Vertebrate limb regeneration occurs in anamniotes such as newts, salamanders, and zebrafish. After appendage amputation, the resection site is covered by a wound epidermis capping the underlying mature tissues of the stump from which the blastema emerges. The blastema is a mass of progenitor cells that constitute an apical growth zone. During outgrowth formation, the proximal blastemal cells pr...

متن کامل

Mps1 defines a proximal blastemal proliferative compartment essential for zebrafish fin regeneration.

One possible reason why regeneration remains enigmatic is that the dominant organisms used for studying regeneration are not amenable to genetic approaches. We mutagenized zebrafish and screened for temperature-sensitive defects in adult fin regeneration. The nightcap mutant showed a defect in fin regeneration that was first apparent at the onset of regenerative outgrowth. Positional cloning re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012